科研人员

Scientist

基本信息

姓名:孙国正
性别:男
出生年月:1994年1月
祖籍:山东省青岛市
联系地址:山东省青岛市崂山区松岭路238号,邮编266100.
电子邮箱:sunguozheng@ouc.edu.cn

主页访问量:4239

简历

· 学习经历

2016.09-2021.07,北京大学,地球化学,博士
2012.09-2016.07,吉林大学,资源勘查工程,学士

· 工作简历

2023.08-至今 中国海洋大学,海底科学与探测技术教育部重点实验室,副教授
2021.09-2023.08 中国海洋大学,海底科学与探测技术教育部重点实验室,科研博士后

· 学术兼职

中国地质学会(GSC),会员
中国地球科学联合会(CGU),会员
《Geosystems and Geoenvironment》青年编委
《Geoscience Frontiers》、《Gondwana Research》、《Precambrian Research》、《Lithos》、《Lithosphere》、《Geological Journal》、《Geosystems and Geoenvironment》、《Mineralium Deposita》等学术期刊审稿人

· 主持的主要科研项目

1)国家自然科学基金面上项目,“鲁西-辽东典型地区太古宙晚期花岗质岩石成分转变的壳-幔动力学机制”(42572241),2026–2029,主持
2)国家自然科学基金青年基金,“鲁西泰安-枣庄地区新太古代赞岐岩类岩石成因及壳幔动力学体制”(42202220),2023–2025,主持
3)全国博士后创新人才支持计划,“华北克拉通太古宙大陆地壳热状态:对早期地壳形成与演化的制约”(BX20220280),2022–2024,主持
4)中国博士后科学基金面上项目(2022M712988),2022–2024,主持
5)山东省博士后创新人才支持计划(SDBX2021003),2021–2023,主持
6)山东省自然科学基金青年基金(ZR202111290393),2023–2025,主持
7)青岛市博士后研究人员应用研究项目,2021–2023,主持
8)中国海洋大学青年英才工程科研启动经费,2024–2026,主持
9)深地国家科技重大专项,“高精度中国大陆岩石圈参考模型”(2025ZD1004900),2025–2028,参加
10)崂山实验室自立科技创新项目,“南海海底氢能成藏机理与资源潜力评价”,2025–2027,参加

· 主要科研奖励

2022年北京市优秀博士学位论文提名
2021年北京大学优秀毕业生
2021年北京大学优秀博士学位论文
2020年博士研究生国家奖学金
2019年博士研究生国家奖学金

主要学术领域

· 学科方向

岩石大地构造

· 研究方向

深时微板块与早期地球系统

· 近期研究兴趣

1)地球早期大陆岩石圈热状态与动力学过程
2)太古宙钾质花岗岩、赞岐岩类、TTG岩石成因机制
3)太古宙微板块重建及其资源环境效应
4)海底氢能来源判识

主要论文与论著目录

· 论文收录情况

论文收录情况:已发表论文40篇,其中以第一作者/通讯作者身份在Nature Communications、GSA Bulletin、Gondwana Research、Precambrian Research等国际刊物上发表SCI论文10余篇。

第一作者/通讯作者文章:
[1] Sun, G.Z., Liu, S.W., Wang, L.T., Yu, Y., Yu, S.Y., Cao, H.H., Gao, L., Hu, Y.L., Fu, J.H., 2025. Late Neoarchean sanukitoids in the North China Craton: A review and significance from a geodynamic perspective. Geosystems and Geoenvironment 4(4), 100426.
[2] Sun, G.Z., Liu, S.W., Li, S.Z., Kusky, T.M., Hu, F.Y., Bao, H., Gao, L., Hu, Y.L., Yu, S.Y., Dai, L.M., Wang, L.T., Wang, X., 2025. Neoarchean orogenic belt evolution in the northeast North China Craton: Implications for the reconstruction of early Earth’s microplates. Precambrian Research 417, 107659.
[3] Yu, Y., Sun, G.Z*., Li, S.Z., Chen, Y.L., Gao, X.Y., 2025. Underplating-induced trans-crustal melting and maturation of Neoarchean continental crust in the North China Craton. Geological Society of America Bulletin 137(3–4): 1538–1552.
[4] Sun, G.Z., Liu, S.W., Li, S.Z., Bao, H., Wang, W., Guo, R.R., Fu, J.H., Gao, L., Hu, Y.L., Wang, X., Yu, S.Y., Dai, L.M., 2024. Neoarchean granitoid magmatism and geodynamic process in the northeastern North China Craton. Geological Society of America Bulletin 136 (11–12), 5091–5108.
[5] Sun, G.Z., Hu, Y.L., Liu, S.W., Li, S.Z., Fu, J.H., Gao, L., 2023. Featured Neoarchean granitoid association in the central North China Craton: An indicator of warm plate subduction. Geological Society of America Bulletin 135(1–2), 295–309.
[6] Sun, G.Z., Liu, S.W., Lü, Y.J., Li, S.Z., Gao, L., Hu, Y.L., Wang, W., Guo, R.R., 2022. Chronological Framework of Precambrian Dantazi Complex: Implications for the formation and evolution of the northern North China Craton. Precambrian Research 379, 106819.
[7] Sun, G.Z., Liu, S.W., Cawood, P.A., Tang, M., van Hunen, J., Gao, L., Hu, Y.L., Hu, F.Y., 2021. Thermal state and evolving geodynamic regimes of the Meso- to Neoarchean North China Craton. Nature Communications 12, 3888.
[8] Sun, G.Z., Liu, S.W., Wang, M.J., Bao, H., Teng, G.X., 2020. Complex Neoarchean mantle metasomatism: Evidence from sanukitoid diorites-monzodiorites-granodiorites in the northeastern North China Craton. Precambrian Research 342C, 105692.
[9] Sun, G.Z., Liu, S.W., Gao, L., Hu, Y.L., Guo, R.R., 2020. Origin of late Neoarchean granitoid diversity in the Western Shandong province, North China Craton. Precambrian Research 339, 105620.
[10] Sun, G.Z., Liu, S.W., Santosh, M., Gao, L., Hu, Y.L., Guo, R.R., 2019. Thickness and geothermal gradient of Neoarchean continental crust: Inference from the southeastern North China Craton. Gondwana Research 73, 16–31.
[11] Sun, G.Z., Liu, S.W., Gao, L., Hu, Y.L., Guo, R.R., Fu, J.H., Wang, M.J., Ma, C.C., Hu, F.Y., 2019. Neoarchean sanukitoids and associated rocks from the Tengzhou-Pingyi intrusive complex, North China Craton: Insights into petrogenesis and crust-mantle interactions. Gondwana Research 68, 50–68.
[12] Sun, G.Z., Xu, W.L., Wang, Z.W., Guo, P., Liu, S.W., 2018. Petrogenesis of Cenozoic shoshonitic rocks in Fiji: Constraints from mineral and whole-rock geochemistry. Geological Journal 53, 2759–2778.

非第一作者/通讯作者文章:
[1] Wang, L.T., Yu. S.Y., Li, C.Z., Jiang, X.C., Peng, Y.B., Li, D.Y., Jiang, X.Z., Zhang, J.X., Gao, X.Y., Li, S.Z., Sun, G.Z., Li, Y.S., 2025. Peritectic garnet entrainment obscures iron isotopic fractionation during crustal anatexis: Evidence from cogenetic TTG-like leucosomes and tonalite pluton. Lithos 108096.
[2] Jiang, X.Z., Yu. S.Y., Liu, Y.J., Li, S.Z., Liu, X.J., Liu, B.R., Sun, G.Z., Chen, L., Li, X.H., Peng, Y.B., Lv, P., Gao, X.Y., Li, C.Z., 2025. Controlling factors of granite chemical diversity and implications for crustal evolution: A case of migmatites from the Daqingshan Complex, North China Craton. GSA Bulletin 137 (9–10), 4215–4238.
[3] Tang, M., Chen, H., Song, S.G., Sun, G.Z., Wang, C., 2024. Zircon Eu/Eu* in Archean TTGs with implications for the role of endogenic oxidation in Archean crustal differentiation. Geochimica et Cosmochimica Acta 378, 259–269.
[4] Wang, W., Lü, Y.J., Gao, L., Sun, G.Z., Zhou, X.Z., Yao, J.C., Yang, W.B., Liang, X.Y., 2024. Late Archean K-rich intermediate magmatism driven by deep supracrustal recycling. Chemical Geology 662, 122215.
[5] Ren, H.Q., Hu, J., Li, S.Z., Zhou, D., Somerville, I., Wang, L., Liu, Y.J., Suo, Y.H., Yu, S.Y., Sun, G.Z., Wang, X.D., 2024. Early Palaeozoic affinity of Hainan Island to Gondwana: New clues from metamorphic monazite and titanite of the Baoban Complex. Lithos 107708.
[6] Wang, L.T., Yu, S.Y*., Li, D.Y*., Sun, G.Z., Li, C.Z., Peng, Y.B., Jiang, X.C., Jiang, X.Z., Chen, L., Li, X.H., Liu, Y.J., Li, S.Z., 2024. The influence of peritectic garnets on magnesium isotopic composition during crustal anatexis: Constraints from TTG-like leucosomes from the North Qaidam orogen, China. Chemical Geology 652, 121995.
[7] Wang, L.T., Yu, S.Y., Sun, G.Z., Lv, P., Peng, Y.B., Jiang, X.Z., Dai, L.M., Liu, Y.J., L, S.Z., 2024. Neoarchaean DTTGs from the Dunhuang Block, Tarim Craton: Insights into petrogenesis and crust-mantle interactions. International Geology Review 66(10), 1910–1928.
[8] He, X., Gao, L., Wang, W., Yao, J.C., Yang, W.B., Sun, G.Z., Guo, R.R., Zhou, X.Z., Hu, J.C., Liang, X.Y., 2024. Early to middle Neoarchean tonalite-trondhjemite-granodiorite (TTG) formation and outward continental growth in the North China Craton. Precambrian Research 405, 107378.
[9] Bao, H., Liu, S.W., Wan, Y.S., Wang, M.J., Sun, G.Z., Gao, L., Wang, W., Fu, J.H., 2022. Neoarchean granitoids and tectonic regime of lateral growth in northeastern North China Craton. Gondwana Research 107, 176–200.
[10] Gao, L., Liu, S.W., Cawood, P.A., Hu, F.Y., Wang, J.T., Sun, G.Z., Hu, Y.L., 2022. Oxidation of Archean upper mantle caused by crustal recycling. Nature Communications 13, 3283.
[11] Li, S.Z., Li, X.Y., Zhou, J., Cao, H.H., Liu, L.J., Liu, Y.M., Sun, G.Z., Suo, Y.H., Li, Y., Yu, S.Y., Jiang, Z.X., 2022. Passive magmatism on Earth and Earth-like planets. Geosystems and Geoenvironment 1(1), 100008.
[12] Liu, S.W., Bao, H., Sun, G.Z., Wang, W., Fu, J.H., Gao, L., Guo, R.R., Hu, Y.L., 2022. Archean crust-mantle geodynamic regimes: A review. Geosystems and Geoenvironment 1(3), 100063.
[13] Fu, J.H., Liu, S.W., Sun, G.Z., Gao, L., 2021. Two contrasting Neoarchean metavolcanic rock suites in eastern Hebei and their geodynamic implications for the northern North China Craton. Gondwana Research 95, 45–71.
[14] Hu, Y.L., Liu, S.W., Fu, J.H., Sun, G.Z., Gao, L., Guo, R.R., 2021. Neoarchean-early Paleoproterozoic granitoids, the geothermal gradient and geodynamic evolution in the Hengshan Terrane, North China Craton. Gondwana Research 94, 143–163.
[15] Bao, H., Liu, S.W., Wang, M.J., Teng, G.X., Sun, G.Z., 2020. Mesoarchean geodynamic regime evidenced from diverse granitoid rocks in the Anshan-Benxi area of the North China Craton. Lithos 366–367, 105574.
[16] Gao, L., Liu, S.W., Hu, Y.L., Sun, G.Z., Guo, R.R., Bao, H., 2020. Late Neoarchean geodynamic evolution: Evidence from the metavolcanic rocks of the Western Shandong Terrane, North China Craton. Gondwana Research 80, 303–320.
[17] Gao, L., Liu, S.W., Sun, G.Z., Hu, Y.L., Guo, R.R., Fu, J.H., Wang, M.J., Hu, F.Y., 2019. Neoarchean crust-mantle interactions in the Yishui Terrane, south-eastern margin of the North China Craton: Constraints from geochemistry and zircon U-Pb-Hf isotopes of metavolcanic rocks and high-K granitoids. Gondwana Research 65, 97–124.
[18] Gao, L., Liu, S.W., Zhang, B., Sun, G.Z., Hu, Y.L., Guo, R.R., 2019. A ca. 2.8 Ga plume-induced intraoceanic arc system in the eastern North China Craton. Tectonics 38, 1694–1717.
[19] Hu, Y.L., Liu, S.W., Gao, L., Sun, G.Z., Guo, R.R., Fu, J.H., Wang, M.J., Hu, F.Y., 2019. Diverse middle Neoarchean granitoids and the delamination of thickened crust in the Western Shandong Terrane, North China Craton. Lithos 348–349, 105178.
[20] Hu, Y.L., Liu, S.W., Sun, G.Z., Gao, L., 2019. Petrogenesis of the Neoarchean granitoids and crustal oxidation states in the Western Shandong Province, North China Craton. Precambrian Research 334, 105446.
[21] Liu, S.W., Fu, J.H., Lu, Y.J., Chen, X., Wang, M.J., Hu, F.Y., Gao, L., Sun, G.Z., Hu, Y.L., 2019. Precambrian Hongqiyingzi Complex at the northern margin of the North China Craton: Its zircon U-Pb-Hf systematics, geochemistry and constraints on crustal evolution. Precambrian Research 326, 58–83.
[22] Fu, J.H., Liu, S.W., Cawood, P.A., Wang, M.J., Hu, F.Y., Sun, G.Z., Gao, L., Hu, Y.L., 2018. Neoarchean magmatic arc in the Western Liaoning Province, northern North China Craton: Geochemical and isotopic constraints from sanukitoids and associated granitoids. Lithos 322, 296–311.
[23] Gao, L., Liu, S.W., Sun, G.Z., Guo, R.R., Hu, Y.L., Fu, J.H., Wang, M.J., Ma, C.C., Hu, F.Y., 2018. Petrogenesis of late Neoarchean high-K granitoids in the Western Shandong terrane, North China Craton, and their implications for crust-mantle interactions. Precambrian Research 315, 138–161.
[24]于洋, 李大鹏, 陈岳龙, 李三忠, 孙国正, 张超, 2025. 鲁西地区新太古代晚期高镁玄武岩-安山岩成因及地质意义. 地质学报 99(6), 1947–1963.
[25] 李三忠, 刘丽军, 索艳慧, 李玺瑶, 周洁, 姜兆霞, 管红香, 孙国正, 于雷, 刘鹏, 2023. 碳构造:一个地球系统科学新范式全文替换. 科学通报 68(4), 309–338.
[26] 李三忠, 索艳慧, 周洁, 钟世华, 孙国正, 刘洁等, 2022. 微板块与大板块:基本原理与范式转换. 地质学报96(10), 3541–3558.
[27] 刘树文, 包涵, 高磊, 孙国正, 王伟等, 2021. 华北克拉通中东部新太古代晚期变质火山岩及动力学体制. 岩石学报37(1), 113–128.
[28] 刘树文, 付敬浩, 孙国正, 高磊, 胡雅璐, 2018. 锦州-迁安太古宙赞岐岩类片麻岩成因及其动力学意义. 岩石学报34(4), 1083–1098.

欢迎前往我的ResearchGate获取最新学术动态: https://www.researchgate.net/profile/Guozheng-Sun
目前招收硕士研究生(地质学方向),欢迎对我研究领域感兴趣的同学联系我!